
Ibéria Medeiros1, Nuno F. Neves1, Miguel Correia2

University of Lisboa.
1
Faculty of Sciences, LaSIGE.

2
IST, INESC-ID

using Data Mining to Predict False Positivesusing Data Mining to Predict False Positives
of Web Application Vulnerabilitiesof Web Application Vulnerabilities

Automatic Detection and CorrectionAutomatic Detection and Correction

Motivation...Motivation...

 May 30, 2013
TheRegister

TheHSecurity

Motivation...Motivation...

 December 16, 2013
ars technica

SANS
KrebsonSecurity

Motivation...Motivation...

 February 18, 2014
New York, CNN Money

Motivation...Motivation...
 February 19, 2014
GovInfo Security

Motivation...Motivation...

 February 27, 2014
BBC, News US & CA

ComputerWorld

Motivation...Motivation...

Web applications are mostly written in PHP... more than 77%

Web applications lack software security !

Web applications with vulnerabilities are insecure

Web applications are exposed to malicious user inputs

 1. : Taint Analysis detect vulnerabilities

 2. : Data Mining predict false positives

 3. :WAP Tool
- Taint analysis
- Data mining
- Code correction

 4. Evaluation

 5. Conclusion

OutlineOutline

 1. : Taint Analysis detect vulnerabilities

OutlineOutline

 2. : Data Mining predict false positives2. : Data Mining predict false positives

 3. :WAP Tool3. :WAP Tool

- Taint analysis- Taint analysis

- Data mining- Data mining

- Code correction- Code correction

 4. Evaluation4. Evaluation

 5. Conclusion5. Conclusion

Vulnerability: SQL Injection example...Vulnerability: SQL Injection example...

$u = $_POST[’user’];

$p = $_POST[’password’];

$q = “SELECT * FROM users WHERE user='$u' AND pass='$p'”;
$r = mysql_query($q);

any

$u = “' or 1=1 -- “;

$q = “SELECT * FROM users WHERE user='' or 1=1-- ' AND pass='any'”; $q = “SELECT * FROM users WHERE user='' or 1=1”;

$p = “any”;

$r = mysql_query($q);$r = mysql_query($q);

SQL Injection
exploited

Vulnerability: SQL Injection example...Vulnerability: SQL Injection example...

$u = $_POST[’user’];

$p = $_POST[’password’];

$q = “SELECT * FROM users WHERE user='$u' AND pass='$p'”;
$r = mysql_query($q);

any

Vulnerability: SQL Injection example...Vulnerability: SQL Injection example...

$u = $_POST[’user’];

$p = $_POST[’password’];

$q = “SELECT * FROM users WHERE user='$u' AND pass='$p'”;
$r = mysql_query($q);

$u = “' or 1=1 -- “;

$q = “SELECT * FROM users WHERE user='' or 1=1”;

$p = “any”;

$r = mysql_query($q);

If we could track the user inputs and verify if they reach
some functions, then we could detect the vulnerability...

SQL Injection
exploited

Taint Analysis: vulnerabilities detectedTaint Analysis: vulnerabilities detected

If we could track the user inputs and verify if they reach
some functions, then we could detect vulnerabilities...

...Taint Analysis
Source Code Static Analysis

Most exploited:

– SQL Injection
– Cross Site Scripting (XSS)

Vulnerabilities detected:

Others:

– Remote file inclusion
– Local file inclusion
– Directory Traversal / Path Traversal
– Source code disclosure
– OS command injection
– PHP code injection

Taint Analysis: taintednessTaint Analysis: taintedness

● taints all entry points (user inputs, e.g., $_POST)
● follows the code propagating its taintedness
● until it reaches a sensitive sink

(some functions, e.g., mysql_query)

How?

SQL Injection
detected

TT DD

$u = $_POST[’user’]; 1 -

$p = $_POST[’password’]; 1 -

$q = “SELECT * FROM users WHERE user='$u' AND pass='$p'”; 1 $u, $p

$r = mysql_query($q); 1 $q
T: taintedness
 (0: untaint, 1: taint)
D: depends of..

Taint Analysis: untaintednessTaint Analysis: untaintedness

PHP has sanitization functions to:
 - sanitize the user inputs
 - invalidate the exploiting of vulnerabilities

Taint Analysis:
 - handles this
 - does not propagate the taintedness

Secure
code

TT DD

$u = $_POST[’user’]; 1 -

$p = $_POST[’password’]; 1 -

$uu = mysql_real_escape_string($u); 0 $u

$pp = mysql_real_escape_string($p); 0 $p

$q = “SELECT * FROM users WHERE user='$uu' AND pass='$pp'”; 0 -

$r = mysql_query($q); 0 -
T: taintedness
 (0: untaint, 1: taint)
D: depends of..

Taint Analysis: false positivesTaint Analysis: false positives

Taint analysis tends to generate false positives
(detected non-vulnerabilities)

How to avoid them?

TT DD

$u = $_POST[’user’]; 1 -

$p = $_POST[’password’]; 1 -

$uu = substr($u, 2, 6); 1 $u

$uu = trim($uu); 1 $uu

$q = “SELECT * FROM users WHERE user='$uu' AND pass='$p'”; 1 $uu, $p

$r = mysql_query($q); 1 $q
T: taintedness
 (0: untaint, 1: taint)
D: depends of..

False
Positive

But... what happens when...

We have a problem!!! How to solve it?

- Not propagate taintedness when sanitization functions are present
- Propagate taintedness between: function calls and include files

Characterization of false positivesCharacterization of false positives

If in the code slice between the entry point and the sensitive sink the user input
is:

 - changed
- string manipulation functions (e.g., substr)
- concatenation operations

 - validated
- type checking functions (e.g., isset, is_string)
- white and black lists

 - manipulated in SQL queries
- aggregate functions (e.g., agv, sum)
- complex query
- FROM clause

What are the symptoms of the possible existence of a false positive?

If we could verify the presence of these attributes in the slice,
then we could classify the vulnerabilities as being a FP or real

The presence of each of these symptoms is an attribute

Approach to resolve false positivesApproach to resolve false positives

If we could verify the presence of these attributes in the slice,
then we could classify the vulnerabilities as being a FP or real

Coding this knowledge
 - hard and complex task
 - a lot of if's statements
 - can incur in logic errors

if with these attributes we could
retrieve and discover information then we could

classify the vulnerabilities

Discover the knowledge

Data Mining

 2. : Data Mining predict false positives

OutlineOutline

 3. WAP Tool3. WAP Tool

- Taint analysis- Taint analysis

- Data mining- Data mining

- Code correction- Code correction

 4. Evaluation4. Evaluation

 5. Conclusion5. Conclusion

 1. : Taint Analysis detect vulnerabilities1. : Taint Analysis detect vulnerabilities

Have... and... want...Have... and... want...

What do we have... What do we want...

Taint
Analysis

Candidate
Vulnerabilities

Real
Vulnerabilities

False
Positives

Data Mining

detects
confirm

s

predicts

Data Mining: what do we need to apply it...Data Mining: what do we need to apply it...

What do we need to apply data mining?

A set of attributes that characterize a false positive
 - string manipulation, validation, manipulation in SQL queries

✓

Class values to classify an instance in the class
 - is a FP (Y); is not a FP (N = real Vulnerability)

✓

A data set of instances with FP and real vulnerabilities to train a
classifier
 - 76 instances: 32 false positives; 44 real vulnerabilities. Data set was obtained

manually by a hard and tedious process

✓

A machine learning classifier to classify new instances

We define a process to evaluate machine learning classifiers
to choose the best that classify our instances with

high accuracy and precision

Composition of the data set usedComposition of the data set used

- 76 instances: 32 false positives + 44 real vulnerabilities
- 15 attributes: 14 to characterize a false positive + 1 to classify it

(...)

Evaluation of classifiersEvaluation of classifiers

Using WEKA to:

– evaluate 10 machine learning classifiers
● 5 Graphical/symbolic algorithms (decision trees)
● 3 Probabilistic algorithms (NB, K-NN, LR)
● 2 Neural network algorithms (MLP, SVM)

– train and test the classifiers with 10-fold cross validation estimator
● divides the data into 10 buckets, trains the classifier with 9 of them and tests it

with the 10th. This process is repeated 10 times to test every bucket with the
classifier trained with the rest

– get 10 metrics to evaluate the classifiers performance
● 3 for false positives prediction
● 3 for real vulnerabilities detection
● 2 global metrics (accuracy and precision)
● 2 global tests

Evaluation of classifiersEvaluation of classifiers

Metrics are based in a confusion matrix

Observed

Yes (FP) No (not FP)

Predicted
Yes (FP)

No (not FP)

match not match

Observed

Yes (FP) No (not FP)

Predicted
Yes (FP) 27 1

No (not FP) 5 43

Logistic Regression

Accuracy = 92.1%
Precision = 92.5%

matchnot match

Whenever more data is included in the data set,
we can redo the process to define a better classifier

 3. WAP Tool
- Taint analysis
- Data mining
- Code correction

OutlineOutline

 4. Evaluation4. Evaluation

 5. Conclusion5. Conclusion

 1. : Taint Analysis detect vulnerabilities1. : Taint Analysis detect vulnerabilities

 2. : Data Mining predict false positives2. : Data Mining predict false positives

ApproachApproach

Analysis
– searches for candidate input validation vulnerabilities in the source

code of a PHP web application

Prediction
– predicts if a candidate vulnerability is a false positive or a real vulnerability

Correction
– inserts fixes in the source code to remove the vulnerabilities

Feedback
– reports the real vulnerabilities detected and how they were corrected
– outputs a corrected version of the web application
– reports the false positives predicted

WAPWAP (WWeb AApplication PProtection)

Code Correction... FixesCode Correction... Fixes

Fixes:
What do they do?
– Do proper validation or sanitization of user input before it

is used in some sensitive sink

Where are they inserted?
– In sensitive sinks or close to them
– Do not compromise the behavior of the web application

What are they?
– Small PHP functions developed by us
– Some do sanitization and others do validation

Vulnerabilities are removed:
Correction of source code by insertion of fixes in the right places

ArchitectureArchitecture

Lexer Parser

PHP
Source
Code

Tree Generator

Taint Analyser
Code Analyzer

False Positives PredictorCode Corrector

Protected
Source
Code

False
Positive

Information

AST

Slice of candidate
vulnerabilitiesTaint analysis

Entry
Points

Sensitive
Sinks

PHP
Sanitization
Functions

Training
data set

Collecting
attributes

Predicting
false positives

Logistic
Regression

classifier

Slice of real
vulnerabilities

False
positives

Fixes

Identifying the
right places

Correcting the
source code

Challenges of implementing WAPChallenges of implementing WAP

Global, interprocedural and context-sensitive analysis

– To avoid false positives and false negatives the taintedness propagation has to be:

● interprocedural: between functions or methods calls
● global: even if the functions/methods belong to different modules
● context-sensitive: to the point of the program where the function call was made

Environment variables

– Resolve the name of the include files to perform the corrected global analysis

Class analysis

– Handles taintedness propagation between objects and methods calls

Uncertainty about PHP’s syntax
– PHP is weakly typed and not formally specified. Frequent use of poorly

documented features that can break the parser

Challenges of implementing WAPChallenges of implementing WAP

Need of both top-down and bottom-up approaches

– navigates in the AST using the top-down approach to taint the entry points, then
following the bottom-up approach to propagate its taintedness to its parent

– identifies the vulnerable path and the right places to insert the fixes using the
bottom-up approach

– collects the attributes and performs the correction of the source code using the top-
down approach

$_POST['user']$u

=

AST (i), TST (ii) and taint analysis of the $u = $_POST['user']; statement (iii)

(i) (ii) (iii)

$_POST['user']

$u

name: $_POST['user']
line: 1
tainted: 1

name: $u
line: 1
tainted: 1

di
re

ct
io

n
o

f
ta

in
t

a
na

ly
si

s
p

ro
pa

ga
tio

n

$u

1: $uu : 3

$q

5: mysql_query : 6

mysql_query

6: $r : 6

$r

6:

$p

2: $q : 5

$uu : 4

$uu

3:

4: $q : 5

 4. Evaluation

OutlineOutline

 5. Conclusion5. Conclusion

 1. : Taint Analysis detect vulnerabilities1. : Taint Analysis detect vulnerabilities

 2. : Data Mining predict false positives2. : Data Mining predict false positives

 3. WAP Tool3. WAP Tool

- Taint analysis- Taint analysis

- Data mining- Data mining

- Code correction- Code correction

Comparison of WAP vs PixyComparison of WAP vs Pixy

● Pixy is a static analysis tool that performs taint analysis to detect SQL
injection and XSS vulnerabilities

● Taint analysis comparative evaluation between WAP and Pixy in
analysis of 10 open source code packages

Without data mining

68 vuln.: 21 are FP

0 false negatives

Same 11 FP than Pixy

73 vuln.: 41 are FP

5 false negatives

Same 11 FP than WAP

+ 30 FP than WAP

47 real vulnerabilities

21 predicted false positives

0 false negatives

47 vulnerabilities corrected

With data mining

Comparison of WAP vs PhpMinerIIComparison of WAP vs PhpMinerII

● PhpMinerII is a tool that predicts the presence of SQLI/XSS
vulnerabilities in PHP applications. On the contrary to WAP, it does not
identify where the vulnerabilities are, only predicts their existence

● PhpMinerII does data mining of slices that end at a sensitive sink,
independently of data being propagated through them starting at an
entry point or not

WAP with data mining

Observed
Yes (Vuln.) No (not Vuln.)

Predicted
Yes (Vuln.) 48 5
No (not Vuln.) 5 20

Logistic Regression
Accuracy = 87.2%
Precision = 85.2%

The 48 vulnerabilities can contain false positives

47 real vulnerabilities

21 predicted false positives

0 false negatives

47 vulnerabilities corrected

Full comparative evaluationFull comparative evaluation

Metric WAP Pixy PhpMinerII

accuracy 92.1% 44.0% 87.2%

precision 92.5% 50.0% 85.2%

WAP analysis to all vulnerabilitiesWAP analysis to all vulnerabilities

Summary of the WAP analysisSummary of the WAP analysis

ConclusionConclusion

● Web applications can have input validation vulnerabilities

● We present an approach and a tool called WAP to automatically identify
and correct these vulnerabilities and to predict false positives using data
mining

● The WAP tool was compared with Pixy and PhpMinerII, analyzing 10
open source code packages, and:

– had better performance in detection of SQLI and XSS vulnerabilities
with and without data mining

● WAP analyzed 35 applications (~470K LOC in ~2900) and identified ~300
vulnerabilities

http://awap.sourceforge.net

Thank you!Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

