Automatic Detection and Correction

of Web Application Vulnerabllities
using Data Mining to Predict False Positives

Ibéria Medeiros*, Nuno F. Neves', Miguel Correia’

University of Lisboa. 1Faculty of Sciences, LaSIGE. 2IST, INESC-ID

Large-Scale Informatics Systems Laboratory lisboa

Motivation...

May 30, 2013

PayPal vulnerability finally closed TheRegister
TheHSecurity

Robert Kugler, 17, found a cross-site scripting flaw on the payment processing firm's
website before claiming a reward under PayFal's bug bounty programme.

The hole was a critical
one: it allowed attackers to inject arbitrary JavaScript code
into the PayPal site. potentially enabling them to harvest users' access credentials.

Motivation...

Botnet forces infected Firefox users to hack the December 16, 2013
sites they visit SANS
"Advanced Fower" automates the process of finding sites vulnerable to data theft, KrebsonSecurity

Advanced Power Botnet Uses Infected Computers to Seek Vulnerabilities

The botnet malware conducts SOL injection aftacks on websites that infected users visit,
So far, Advanced Power has detected more than 1,800 websites that are vulnerable to the attacks.

Motivati

Big American retail stores have become a top target of February 18, 2014
cybercriminals, but the retail industry has very little incentive to New York, CNN Money
beef up its security.

But retailers also see more to gain from collecting
consumer information than protecting it. That magnetic

stripe shares your name, bank and card information

Hackers that once targeted banks exclusively now aim at
retailers. In 2013, they recorded the highest number of data breaches in a decade,
according to the Open Security Foundation.

Motivation...
February 19, 2014

Report: Cyberthreat Detection Lacking o ety

Critical Infrastructure Security Incidents Go Unnoticed

Common methods used to infiltrate critical infrastructure organizations include
attacks, spear phishing and SCL injection, according to the ICS-CERT report.

Motivation...

A British man has been charged with hacking into US Federal
Reserve computer servers and stealing the personal information
of users.

Love used a SOL atfack to infiltrate the bank's servers,

hacking into the Federal Reserve Bank's servers and stealing names, emall
addresses and other personal information of the bank's computer users.

February 27, 2014
BBC, News US & CA
ComputerWorld

Motivation...

Web applications are exposed to malicious user inputs
Web applications with vulnerabilities are insecure

Web applications lack software security !

Web applications are mostly written in PHP... more than 77%

Outline
1. Taint Analysis: detect vulnerabilities
2. Data Mining: predict false positives
3. WAP Tool:

- Taint analysis
- Data mining
- Code correction

4. Evaluation

5. Conclusion

Outline

1. Taint Analysis: detect vulnerabilities

N

. Data Mining: preadict false positiv

E
(—
(D

-
2

3. WAP Tool:
- Taint analysis
- Data rining
- Cocdle correction

4, =valuation

5. Conclusion

Vulnerability: SQL Injection example...

Mew Tab - Mozilla Firefox | x

File Edit View History Bookmarks Tools Help -
I New Tab | + |
@*‘ ‘*‘% (S |Search or enter address v B .V Google Q @]-L—ﬁ
i Most Visited~ P Release Notes [JFedora Project™ [JRed Hat™ »
Username
' or 1=1 -- J
P assword
any
P | R | 1 177,
1=1-: "' AND pass="any"’;

,,,,,,\\%%77!&\ ;7%7;//1 -~

Vulnerability: SQL Injection example...

Username

$u=% POST[user’]; “— ‘ orl=1--

$p = $_POST[password]; «— passwora
$q = “SELECT * FROM users WHERE any

$r = mysqgl_query($q);

Vulnerability: SQL Injection example...

$u=9%_POST[user];

$p =$_POST[password’];

$q = “SELECT * FROM users WHERE user='$u’ AND pass="$p"";
$r = mysql_query($q);

$u=""or1=1--% SQL Injection
$p = "any”, - exploited
$q = “SELECT * FROM users WHERE user=" or 1=1"; N

$r = mysql_query($q);

If we could track the user inputs and verify if they reach

some functions, then we could detect the vulnerabillity...

Taint Analysis: vulnerabilities detected

If we could track the user inputs and verify if they reach

some functions, then we could detect vulnerabillities...

% ...Taint Analysis
Source Code Static Analysis

Vulnerabilities detected:

Most exploited: Others:
- SQL Injection - Remote file inclusion
- Cross Site Scripting (XSS) - Local file inclusion

- Directory Traversal / Path Traversal
— Source code disclosure

- OS command injection

- PHP code injection

Taint Analysis: taintedness

How?

* taints all entry points (user inputs, e.g., $ POST)
» follows the code propagating its taintedness
 until it reaches a sensitive sink

(some functions, e.g., mysql_query)

SQL
$u=3% POST[userT]; | tecte
$p = $_POST[password’]; |

$r = mysgl_query($q);

$q = “SELECT * FROM users WHERE user='$u' AND pass=

T D

1 -

1 -
'$p"; 1 $u, $p

1 $q

T: taintedness
(O: untaint, 1: taint)
D: depends of..

Taint Analysis: untaintedness

PHP has sanitization functions to:
- sanitize the user inputs
- invalidate the exploiting of vulnerabilities

Ly Taint Analysis:
- handles this
- does not propagate the taintedness

T D
$u =% POST[user’]; _ Secure 1 _
$p =3$_POST[passwordT; S code 1 -
$uu = mysqgl_real escape_string($u); 0 $u
$pp = mysgl_real _escape_string($p); 0 $p
$q = “SELECT * FROM users WHERE user='$uu' AND pass='$pp"”; 0 -
$r = mysgl_query($0q); 0 -
T: taintedness
(O: untaint, 1: taint)
D: depends of..

Taint Analysis: false positives

Taint analysis tends to generate false positives
(detected non-vulnerabillities)

How to avoid them?

- Not propagate taintedness when sanitization functions are present
- Propagate taintedness between: function calls and include files

But... what happens when...

T D
$u=$_POST[userT; 1 -
$p =$_POST['password’; False 1 _
$uu = substr($u, 2, 6); . Positive 1 $u
$uu = trim($uu); _ 1 $uu
$q = “SELECT * FROM users WHERE user= $uu AND pass='$p"; 1 S$uu, $p
$r = mysql_query($q); 1 $q
T: taintedness
(O: untaint, 1: taint)
D: depends of..

We have a problem!!! How to solve it?

Characterization of false positives

What are the symptoms of the possible existence of a false positive?

If in the code slice between the entry point and the sensitive sink the user input
IS:
- changed
- string manipulation functions (e.g., substr)
- concatenation operations

- validated
- type checking functions (e.qg., isset, is_string)
- white and black lists

- manipulated in SQL queries
- aggregate functions (e.qg., agv, sum)
- complex query
- FROM clause

The presence of each of these symptoms is an attribute

If we could verify the presence of these attributes in the slice,

then we could classify the vulnerabillities as being a FP or real

Approach to resolve false positives

If we could verify the presence of these attributes in the slice,

then we could classify the vulnerabillities as being a FP or real

|-} Coding this knowledge
- hard and complex task
- a lot of if's statements
- can incur in logic errors

If with these attributes we could
retrieve and discover information then we could
classify the vulnerabillities

ll} Discover the knowledge
Data Mining

Outline
1. Taint Analysis: detect vulneraoilities

2. Data Mining: predict false positives

3. WAP Tool
- Taint analysis
- Data rmining
- Code correction

4. Evaluation

5. Conclusion

Have... and... want...

What do we have... What do we want...

Real
Vulnerabilities

Taint detects | Candidate
Analysis Vulnerabilities

False
Positives

Data Mining

Data Mining: what do we need to apply it...
What do we need to apply data mining?

A set of attributes that characterize a false positive
- string manipulation, validation, manipulation in SQL queries

Class values to classify an instance in the class
-isa FP (Y); is not a FP (N = real Vulnerability)

A data set of instances with FP and real vulnerabilities to train a

classifier

- 76 instances: 32 false positives; 44 real vulnerabilities. Data set was obtained
manually by a hard and tedious process

A machine learning classifier to classify new instances
We define a process to evaluate machine learning classifiers

to choose the best that classify our instances with
high accuracy and precision

Composition of the data set used

- 76 instances: 32 false positives + 44 real vulnerabilities
- 15 attributes: 14 to characterize a false positive + 1 to classify it

Potential vulnerability String manipulation
. Extract | String | Add | Replace | Remove

Type Wabapp substring | concat. | char | string |whitesp.

S0 LI CurrentC ost b4 'y e N M

S0 LI CurrentCost b e e M M

S0 LI CurrentCost M N N M M

XES £ ITL0 TLC TS M b M b M

Xa5 Mifm-0.13 M by N by b

X85 5. |ZiPEC .32 M 'y N N N

RFI DWWA 1.0.7 M N N N N

RFI SRD M N N b4 N

RFI SRD M N N by N

s CI DWVWA 1.0.7 M 'y N ' N

X85 5t |vicnumlb b N N N N

Xas Mim-0.13 M N N N N ()

Validation SQL guery manipulation
Type IsSet Pattern | While | Black | Error | Aggreg. |[FROM| Numeric |Complex
, , . . ; . , , Class
checking | entry point | control list list |/ exit| function | clause |entry point quUary

M N N N M N M N M N Yes
M N N N N N N M M N FEE
M N N N N N M M N N No
M N N N M M NA NA MA NA Yes
M N N N M N NA NA MA NA Yes
M N N N N N MNA MNA MNA NA Mo
M N N b N Y MNA NA MNA NA Yes
M by N N M M NA NA MA NA Mo
M ' ' N N N NA NA MA NA Mo
M N N N b4 N MNA NA MNA NA Yes
M N 'y N N N MNA NA MA NA Yes
M N N N b M NA NA MA NA Yeas

Evaluation of classifiers
Using WEKA to:

- evaluate 10 machine learning classifiers

* 5 Graphical/symbolic algorithms (decision trees)
« 3 Probabilistic algorithms (NB, K-NN, LR)
e 2 Neural network algorithms (MLP, SVM)

— train and test the classifiers with 10-fold cross validation estimator

* divides the data into 10 buckets, trains the classifier with 9 of them and tests it
with the 10th. This process is repeated 10 times to test every bucket with the
classifier trained with the rest

- get 10 metrics to evaluate the classifiers performance

« 3 for false positives prediction

« 3 for real vulnerabilities detection

« 2 global metrics (accuracy and precision)
e 2 global tests

Evaluation of classifiers

Metrics are based in a confusion matrix

Observed
Yes (FP) No (not FP)
Predicted Yes (FP) match not match
eaiete No (not FP) not match match
Observed
Yes (FP) No (not FP)
_ Yes (FP) 27 1
Predicted No (not FP) 5 43

Logistic Regression

Accuracy = 92.1%
Precision = 92.5%

Whenever more data is included in the data set,
we can redo the process to define a better classifier

Outline

1. Taint Analysis: detect vulneraoilities

2. Data Mining: predict false positiv

3. WAP Tool

- Taint analysis
- Data mining
- Code correction

Q!
(D
Q)

4. Evaluation

5. Cornclusion

Approach
WAP (Web Application Protection)

€

Analysis
- searches for candidate input validation vulnerabilities in the source
code of a PHP web application

Prediction
- predicts if a candidate vulnerability is a false positive or a real vulnerability

Correction
— Inserts fixes in the source code to remove the vulnerabilities

Feedback

- reports the real vulnerabilities detected and how they were corrected
— outputs a corrected version of the web application
— reports the false positives predicted

Code Correction... Fixes

Vulnerabilities are removed:
Correction of source code by insertion of fixes in the right places

Fixes:
What do they do?

- Do proper validation or sanitization of user input before it
IS used in some sensitive sink

Where are they inserted?
- In sensitive sinks or close to them
- Do not compromise the behavior of the web application

What are they?
- Small PHP functions developed by us
- Some do sanitization and others do validation

Architecture

PHP
Source
Code
y Entry Sensitive PHP
Lexer Parser AST : : Sanltlz.atlon :
Points Sinks _ Functions |

Slice ofcandldate}

Tree Generator

| > Taint analysis ‘ vulnerabilities
Taint Analyser -
Code Analyzer T |
Y — v
|dentifying the - False Collecting
right places positive”sﬂ ¢ attributes
Correcting the \ ¢ IPredict_itr_\g - 'gra;inin%
source code / alse positives - dataset
Protected | i | Slice of real T Logistic |
Source Eives vulnerabilities Regression
Code ~ classifier
Code Corrector False Positives Predictor

Challenges of implementing WAP

Global, interprocedural and context-sensitive analysis

- To avoid false positives and false negatives the taintedness propagation has to be:

* interprocedural: between functions or methods calls
» global: even if the functions/methods belong to different modules
e context-sensitive: to the point of the program where the function call was made

Environment variables

- Resolve the name of the include files to perform the corrected global analysis

Class analysis

- Handles taintedness propagation between objects and methods calls

Uncertainty about PHP’s syntax
- PHP is weakly typed and not formally specified. Frequent use of poorly
documented features that can break the parser

C,

Challenges of implementing WAP

Need of both top-down and bottom-up approaches

- navigates in the AST using the top-down approach to taint the entry points, then
following the bottom-up approach to propagate its taintedness to its parent

- identifies the vulnerable path and the right places to insert the fixes using the
bottom-up approach

— collects the attributes and performs the correction of the source code using the top-
down approach

[$uu: 3]
A
name: $u IS [$q:5]
E] _______________ line: 1 ‘g
"""" tainted: 1 - 8
S g $uu
=
~~~~~~~~ name: $_POST[user] 2 2 : _
tainted: 1 S
: (s0:5 )
0] (ii) (iii)
AST (i), TST (ii) and taint analysis of the $u = § POST[user’]; statement (iii) “
[ mysql_query : 6 ]
a [ $r: 6 ]

C,

(] )



Outline

2. Data Mining: oredict false positiv

(D
U

3. WAP Tool

Taint analysis
Data rnining
Code corraction

4. Evaluation

1

. Conclusion



Comparison of WAP vs Pixy

* Pixy is a static analysis tool that performs taint analysis to detect SQL
Injection and XSS vulnerabilities

« Taint analysis comparative evaluation between WAP and Pixy in
analysis of 10 open source code packages

Weba WAP-TA Pixy WAP {cnmplntn]

PP SOLI | MEs | FP | FMN | SQLI | et | FP | FN | SQLI | HES | FP | FN | Clorrected
CurrentCost = 4 ) ] = 5 = ] 1 | > ] 5
DVWA 1.0.7 4 2 2 (J 4 (0 2 2 2 2 2 (J 4
£ IO T 1T 2 0 ) ] s o ] ] 2 3 a4 ] o
Measureit 1.14 1 T T 1] 1 16 16 ] 1 i) T 1] 1
Mfm-0.13 ] = 3 1] 1] 10 = 3 i) 5 3 1] 5
Multilidae 2.3.5 ] 2 ] ] - - - - ] 2 ] ] 2
SAMATE 3 11 1] 1] 4 11 1 i) 3 11 0 1] 14
Wicnum 15 3 1 3 ] 1 1 3 ] ] 1 a4 ] 1
Wackopicko 3 5 ] ] - - - - 3 5 0 0 =}
FZIPEC 0.32 3 1] 1 1] 3 T = 1] 2 i) 1 0 2
Total 2 46 21 (0 20 a3 41 ) 14 as 21 ] 47

68 vuln.: 21 are FP 73 vuln.: 41 are FP 47 real vulnerabillities
0 false negatives 5 false negatives 21 predicted false positives
Same 11 FP than Pixy Same 11 FP than WAP O false negatives
+ 30 FP than WAP 47 vulnerabilities corrected
\ - g N g
~" —~
Without data mining With data mining




Comparison of WAP vs PhpMinerll

 PhpMinerll is a tool that predicts the presence of SQLI/XSS
vulnerabilities in PHP applications. On the contrary to WAP, it does not
identify where the vulnerabilities are, only predicts their existence

 PhpMinerll does data mining of slices that end at a sensitive sink,
iIndependently of data being propagated through them starting at an

entry point or not

Observed
Yes (Vuin.) No (nhot Vuln.)
_ Yes (Vuln.) 48 5
Predicted No (not Vuln.) 5 20

Logistic Regression

Accuracy = 87.2%
Precision = 85.2%

The 48 vulnerabilities can contain false positives

47 real vulnerabilities

21 predicted false positives

O false negatives
47 vulnerabilities corrected

) -

J

-~

WAP with data mining




Full comparative evaluation

Metric WAP Pixy PhpMinerll
accuracy 92.1% 44.0% 87.2%
precision 92.5% 50.0% 85.2%




WAP analysis to all vulnerabilities

Detected taint analysis Detected
Webapp RFI, LFI data Corrected
SQLI DT/PT SCD | OCSI| XSS |Total | FP mining
currentcost 3 () () () 4 T 2 0 0
DWVWA 1.0.7 4 3 () ¥ 4 17 = 0 0
I ONCIN S 2 () () () 13 15 3 12 12
Measureit 1.14 1 () () () 11 12 T 0 0
Mtm 0.13 () () () 0 o B 3 5 5
Mutillidae 2.3.5 () (i () 2 = 10 () 10 10
COWASP Vienum : () () () 1 4 : 1 1
SRDM) 3 § 0 () 11 ) 1 19 19
Wackopico : 2 0 1 5 11 0 11 11
ZIPEC 0.32 3 () () 0 4 T 1 § §
Total 22 11 () 9 §32) 111 28 2 B




Summary of the WAP analysis

. . . Lines of Analysis Vuln, Vulner.
Web application Files code time (&) files found
adminer-1.11.0 45 5,434 27 3 3
Butterfly insecure 16 2,364 3 ) 10
Butterfly secure 15 2678 3 3 4
currentcost 3 270 1 2 4
dmozZ2myzagl G 1,000 2 ] 1]
DWVWA 1.0.7 310 31,407 15 12 15
£ IT10 10 TTL S TG 6,276 G 5] 15
Ghost 16 398 2 2 3
gilbitron-FIP 14 328 1 0 ]
GTD-PHP G2 4,853 1o 33 111
Hexjector 1.0.6 11 1,640 3 ] 1]
Lithuanian-7.02. 05-v1.6 132 3,790 24 0 ]
Measureit 1.14 2 96T 2 1 12
Mfm 0.13 T 5,859 G 1 e}
Mutillidaes 1.3 15 1,623 G 10 19
Mutillidae 2.3.5 578 102 567 63 T 10
oosvE-0.2 4 243 1 ] 1]
OWASP Vicnum 22 514 2 T 18
paCRUD 0.7 L0 11,0079 11 0 ]
Feruggia 10 DEE 2 5] 22
PHF X Template (0.4 L0 3,009 5 0 ]
PhpBE 1.4.4 G2 20,743 25 0 ]
Phpems 1.2.2 G 227 2 3 )
PhpCrud G 612 3 0 ]
PhpDiary-0.1 9 G18 2 0 ]
PHFPFuzion G633 27,000 40 0 ]
phpldapadmin-1.2.3 a7 28,601 ) ] 1]
PHFPLib 7.4 T3 13,383 a5 3 14
PHPMvyAdmin 2.0.5 40 4,730 18 0 ]
PHPMvyAdmin 2.2.0 34 9,430 12 0 0
PHPMvyAdmin 2.6.3-pll 287 143,171 105 0 ]
Phpweather 1.52 13 2465 ) ] 1]
WebCalendar 122 30,173 12 ] 1]
WebScripts 5] 391 4 2 14
ZIPEC 0.32 L0 TES 2 1 T
Total 2854 470,496 473 107 204
[T | [C470.490) |




Conclusion

 Web applications can have input validation vulnerabilities

 We present an approach and a tool called WAP to automatically identify
and correct these vulnerabilities and to predict false positives using data
mining

« The WAP tool was compared with Pixy and PhpMinerll, analyzing 10
open source code packages, and:

- had better performance in detection of SQLI and XSS vulnerabilities
with and without data mining

« WAP analyzed 35 applications (~470K LOC in ~2900) and identified ~300
vulnerabilities



5’

http.//awap.sourceforge.net

Thany you!



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

